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Abstract:  In this paper, we present TALC -- a small language extension for 
C and C++ suitable for applications that traverse common data structures such as 
large meshes or cubes. We make three contributions in this paper. First, we 
motivate the need for a new C/C++ extension focused on addressing emerging 
problem areas in performance and code maintainability. Second, we define the 
language extension and illustrate how it is employed in C. Third, we demonstrate 
the utility of such an extension by providing comparison code snippets that 
demonstrate advantages in both software maintainability and performance. 
Performance benefits of the extension are provided for several experiments 
resulting in up to 200% speedups over more conventional methods to achieve the 
same algorithm. 

 
 
 

1. Introduction 
 
This is a rewarding time for those practitioners who 
develop scientific applications. Modern computer 
architectures are more powerful than ever. The state of 
the art in mesh-based and grid-based computing now 
permits more accuracy and resolution than ever. Indeed, 
computer modeling is joining theory and empirical trial 
as a third component in physical sciences research. 
 
The same advances that have extended the capabilities 
of scientific applications have also generated new and 
significant challenges. Whereas today’s computers have 
more potential than ever before, realizing that potential 
is becoming increasingly difficult due to new 
performance issues and the same old software 
engineering issues. To address these issues, we have 
developed TALC, a new C language extension focused 
on performance and software engineering problems. 
The name TALC is an acronym for Topologically 
Aware Layout C. 
 
The outline of our paper is as follows. In section 2, we 
provide the motivation for our work. In section 3, we 
describe the resulting design of TALC. Section 4 
provides a description of ROSE, a C-scoping compiler 
infrastructure used in our implementation of TALC. 
Section 5 discusses our results, and Section 6 describes 
related work. Finally we provide our conclusions with 
Section 7. 

 
2. Motivation 
 
2.1 Performance Considerations 
 
TALC was designed to improve application 
performance in several key aspects. Stall cycles have 
become an important factor in determining an 
applications performance. While little concern was 
given to stall cycles at the advent of many of today’s 
most prevalent languages including C and C++, the 
dizzying speed of computer architecture innovation is 
now challenging many long held beliefs. For instance, 
previously conventional wisdom held that ‘multiply is 
slow, but load and store is fast’. But today’s 
conventional wisdom should be updated to a new view 
that recognizes the “Memory wall”. [1] Now Load and 
store is slow, but multiply is fast. Modern 
microprocessors can take 200 clocks to access Dynamic 
Random Access Memory (DRAM), but floating-point 
multiplies may take only one clock cycle when 
pipelined. Contemporary architectures experience as 
much as 50% stall cycles for repetitive data-centric 
tasks as measured by “typical applications” such as the 
SPEC2000 CPU benchmark 181.mef. [2]. 
 
Moore’s law, the observation that ‘the number of 
transistors that can be inexpensively placed on an 
integrated circuit is increasing exponentially, doubling 
approximately every two years,’ has given rise to a 
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renaissance of architectural diversity. Today’s 
supercomputer center is faced with a vast array of 
architectural choices where only one or two existed in 
yesteryear. With each choice, whether it be multi-core, 
Graphics GPU assisted core, added FPU unit core, 
added Vector unit core, and so on, one fact remains 
constant: the need for instructions and data is growing 
at a much faster rate than that of memory bandwidth. 
The use of multi-core and other advanced processor 
technologies are expected to expand over the next few 
years. 
  
This is having a pronounced effect on application 
performance as seen when looking at the period 
between 1986 and 2006 using integer SPEC 2006 
programs. [3] Performance improved by 52% per year 
between 1986 and 2002. However since 2002, 
performance has improved less than 20% per year. By 
2006, processors will be a factor of three slower than if 
progress had continued at 52% per year. [4]  
 
When combined, these trends suggest that a key 
component to current and future performance will be a 
programmer’s ability to arrange the most accessed data 
structures such that they are efficient with respect to 
stalls. Furthermore, the rapidly changing architectural 
landscape gives rise to the need for performance 
portability, the desirable trait that allows optimizations 
to carry-over from one computer architecture or 
compiler to another. Portability is essential, since many 
programs outlast their original platforms. In the 
supercomputing arena, a computer has a typical useful 
lifetime of 5 years, while many-decades-old 
applications codes are still in daily use. [5]  
 
2.2 Software Engineering Considerations 
 
Another major goal for TALC is to improve software 
maintainability. Scientific applications frequently 
evolve over many years through the efforts of small to 
medium size software teams. Given the complexity of 
the applications, it is not surprising that these 
applications are often several hundred thousand lines of 
code or more. Just as performance considerations are 
important, software engineering considerations must be 
given a near equal priority.  TALC attempts to improve 
software by providing a stronger type system that can 
be checked at compile-time. 
 
C and C++ are often criticized for being cryptic. C is 
able to adequately describe how an algorithm is to be 
realized in the low-level machine oriented domain, 
whereas it’s ability to describe the high-level what is to 
be computed is obscured. [6] On the other hand, C++ 
uses objects to describe what high level problem is 
being solved, but how that problem is being solved can 
be lost in a sea of method calls, each responsible for a 
small part of the task.  TALC provides a happy medium 

between these two extremes. It allows for highly 
readable code that focuses on the what while at the 
same time providing an understanding of the how. 
 
There is no simple way to determine the highest 
performance data structure across all possible 
architectures at the beginning of a software project. 
Once a data structure strategy is chosen for a large 
application, any speculative attempt to convert to 
another data structure for performance improvement 
will likely be time-consuming and introduce errors. 
Unfortunately, this limitation is at odds with the 
ongoing trend in the industry. Fueled by Moore’s law, 
system architectures continue to change over time. To 
take full advantage of multi-core and other advanced 
processor technologies, a large amount of code will 
likely need to be rewritten, especially in the High 
Performance Computing (HPC) arena. TALC mitigates 
the effort of these rewrites by moving the data layout 
problem to a higher level so that an important class of 
layout choices can be implemented in minutes rather 
than weeks or months.  It also introduces a notation that 
improves architectural portability. 
 
3. The Design of TALC 
 
TALC was designed to target applications such as Sn 
transport, finite difference, finite volume, and finite 
element methods on structured or unstructured meshes.  
It also applies to many signal and image processing 
algorithms.  A further important set of applications that 
can benefit from TALC are those that include multi-
dimensional arrays of data. 
 
TALC is not a vector language as described in most of 
the literature. [8, 9] Rather, TALC may be viewed as a 
centralized way to select the generation of array or 
struct memory layouts for array data, with the optional 
capability to automatically generate subscript indices 
within the context of loops. The TALC extension can 
be incrementally introduced into existing C/C++ code. 
 
3.1 The Data Layout Problem 
 
Programmers have three basic choices for organizing 
arrays of data, as shown in Figure 1. The performance 
of each choice can vary greatly as code is ported from 
machine to machine and compiler to compiler. The 
execution of array statements involves inefficiencies 
stemming from several sources and the problem has 
been well documented, by many researchers [10,11,12]. 
Our approach to performance within TALC is to use 
source-to-source transformation so that memory layout 
decisions can be globally applied at compile time. 
 
As an example of the data layout problem, consider the 
consequences of struct-like data layouts. There are 
many machines where a struct-like clustering is the 
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most efficient due to hardware factors such as a reduced 
register pressure and enhanced memory streaming.  On 
the other hand, other processors have hardware features 
and compiler optimizations that perform better with 
array-like layouts, for example the SSE instructions on 
the x86 architecture. You would like to be able to run in 
both environments while compiling from a static code 
base. This can be achieved with C++, but the resulting 
code is not necessarily easy to read or maintain. 

  
Sample Data Structures Commonly Found 

In Mesh-Based Algorithms 

 
Figure 1. Sample Data Layouts 

 
3.2 Topological Grouping of Data 
 
It is desirable to incorporate high-level concepts from 
the problem domain into the data structures.  This is 
one of the key ideas behind object oriented 
programming.   An example of this might be to group 
data having similar topological characteristics.  By 
topology, we mean not only a similar physical 
topology, but also similar usage patterns. 
 
Consider, for instance, coordinate components.  Each 
coordinate component array is associated with a 
specific point in space, and each component array has 
similar descriptive character and the same length. Such 
arrays are referred to as topologically equivalent. 
 
At times, it is useful to extend the concept of 
topological scope to encompass a wider class of arrays.  
Consider coordinate components and velocity 
components.  There will often be a velocity associated 
with every coordinate and a coordinate associated with 
every velocity.  In this case the coordinates and 
velocities are referred to as topologically similar. 
 
In contrast, particle coordinates and mesh node 
coordinates may have similar coordinate component 
data, but particles often move independently from mesh 

coordinates.  Furthermore, particles will probably be 
created and destroyed more often. For these reasons, 
one typically does not group particle coordinates with 
mesh coordinates.  Such data items are referred to as 
topologically dissimilar, in spite of having the same 
underlying form of array data. 
 
Grouping data by topological characteristics provides a 
powerful tool for manipulating data, especially where 
subsets are used heavily.  TALC uses topological 
grouping as a way to control data layouts in memory 
and as a way to improve readability and correctness of 
code. 
 
3.3 How Schemas address the Data Layout Problem 
and the Topological Grouping Problem 
 
The TALC user begins by creating a single schema file 
describing the topological grouping of array data in the 
code.  Topological grouping can be nested in 
hierarchies to indicate a subset relationship.  Within 
each topological scope, the interleave of array data can 
be controlled by the ordering of declarations.   
 

A Vector Schema in TALC 

View element 
   Field deltz 
   Field dxx dyy dzz dxy dxz dyz 
   Field sxx syy 
   Field txy txz tyz 
   Field v vnew 
   View material 
      Field delts 
      Field newSxx newSyy newSzz 
               newTxy newTxz newTyz 
   View 
View 

Figure 2. Sample Vector Schema Incorporating all context of 
Array-like, Struct-like, and Clustered-Struct access 

 
Figure 2 illustrates a sample schema. Topological 
scopes are delimited by the View keyword. Array data 
is declared with the Field keyword.  When a name 
appears by itself after a Field keyword, it indicates an 
array-like representation.  When multiple names appear 
after a Field keyword, it represents a struct-like array 
representation. 
 
The schema describes relationships between arrays and 
the layout of those arrays in memory.  It does not 
allocate memory.  Instead, it cooperates with a memory 
allocation API to impose rules on how allocations will 
occur. The compiler can then use the schema to 
generate structs or arrays as appropriate at compile 
time.  Since the groupings can be hierarchical, subtle 
relationships among groups of arrays can easily be 
captured and exploited. 
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3.4 Writing TALC Code 
 
Once a TALC schema has been created, code fragments 
that access arrays can be converted to use the TALC 
extension.  We will start by looking at C code.  Figure 3 
illustrates accessing mesh elements within a loop. Such 
code snippets are common in unstructured mesh based 
codes. 
 

Potential Options for Mesh Access 
(accessing mesh elements in a loop) 

Array-Like Access 
 
real8 quarterDelta = 0.25 * deltaTime; 
 
  for (int i = 0 ; i < material_length ; i++){ 
    int index = material_map[i]; 
    real8 szz = - sxx[index] - syy[index] ; 
 
    deltz[index] += quarterDelta * (vnew[index] + v[index]) * 
      (    dxx[index] * (sxx[index]  + newSxx[i])  +    dyy[index] * (syy[index]  + newSyy[i]) + 
           dzz[index] * (szz             + newSzz[i]) + 
       2.*dxy[index] * (txy[index]   + newTxy[i]) + 2.*dxz[index] * (txz[index]  + newTxz[i]) + 
       2.*dyz[index] * (tyz[index]   + newTyz[i]) ) ; 
 
    delts[i] += quarterDelta * (vnew[index] + v[index]) * 
      (    dxx[index] * sxx[index]  +    dyy[index] * syy[index] +      dzz[index] * szz  + 
 2.*dxy[index] * txy[index] + 2.*dxz[index] * txz[index]  +  2.*dyz[index] * tyz[index] ) ; 
  } 
 

Struct-Like Access 
 
for (int i = 0 ; i < material_length ; i++){ 
    int index = material_map[i]; 
    real8 szz = - elem[index].sxx – elem[index].syy ; 
 
    elem[index].deltz += quarterDelta * (elem[index].vnew + elem[index].v) * 
      (    elem[index].dxx * (elem[index].sxx + materialElem[i].newSxx)  + 
           elem[index].dyy * (elem[index].syy + materialElem[i].newSyy)  + 
           elem[index].dzz * (                   szz + materialElem[i].newSzz) + 
       2.*elem[index].dxy * (elem[index].txy + materialElem[i].newTxy) + 
       2.*elem[index].dxz * (elem[index].txz + materialElem[i].newTxz) + 
       2.*elem[index].dyz * (elem[index].tyz + materialElem[i].newTyz) ) ; 
 
    materialElem[i].delts += quarterDelta * (elem[index].vnew + elem[index].v) * 
      (    elem[index].dxx * elem[index].sxx  +     elem[index].dyy * elem[index].syy + 
           elem[index].dzz * szz                     + 2.*elem[index].dxy * elem[index].txy + 
       2.*elem[index].dxz * elem[index].txz  + 2.*elem[index].dyz * elem[index].tyz ) ; 
  } 
 

Clustered-Struct Access 
 

for (int i = 0 ; i < material_length ; i++){ 
    int index = material_map[i]; 
    real8 szz = - elem[index].sxx – elem[index].syy ; 
 
    deltz[index] += quarterDelta * (volume[index].vnew + volume[index].v) * 
      (    deform[index].dxx * (stress[index].sxx + materialStress[i].newSxx)  + 
           deform[index].dyy * (stress[index].syy + materialStress[i].newSyy)  + 
           deform[index].dzz * (                     szz + materialStress[i].newSzz) + 
       2.*deform[index].dxy * (stress[index].txy + materialStress[i].newTxy) + 
       2.*deform[index].dxz * (stress[index].txz + materialStress[i].newTxz) + 
       2.*deform[index].dyz * (stress[index].tyz + materialStress[i].newTyz) ) ; 
 
    delts[i] += quarterDelta * (volume[index].vnew + volume[index].v) * 
      (    deform[index].dxx * stress[index].sxx  +     deform[index].dyy * stress[index].syy + 
           deform[index].dzz * szz                       + 2.*deform[index].dxy * stress[index].txy + 
       2.*deform[index].dxz * stress[index].txz  + 2.*deform[index].dyz * stress[index].tyz ) ; 
  } 
 

 
Figure 3. Sample Access Patterns In A Loop 

Figure 4 illustrates TALC code. All the sample C code 
snippets in Figure 3 can be generated by the single 
TALC code snippet in Figure 4, in combination with an 
appropriate schema. In Figure 4, note that all mesh 
indices have been stripped from all array operations in 
the loop, and the for loop has been changed to a while 
loop over an Indexset named material. IndexSets are a 
TALC construct needed to define how loops are 
traversed.  Indexsets are allocated to correspond to a 
schema View.  Indexsets behave much like “regions” in 
the ZPL [13] language, but Indexsets can be structured 
or unstructured. 

 
Resulting TALC Code Snippet 

(Compiler will use schema to select from among Array-
like, Struct-like, Clustered-Struct) 

TALC access 
 
double quarterDelta = 0.25 * deltaTime; 
 
  while(material) { 
    real8 szz = - sxx - syy ; 
 
    deltz += quarterDelta * (vnew + v) * 
      (    dxx * (sxx + newSxx) +     dyy * (syy  + newSyy)  + 
           dzz * (szz + newSzz) + 
       2.*dxy * (txy + newTxy)  + 2.*dxz * (txz + newTxz) + 
       2.*dyz * (tyz + newTyz) ) ; 
 
    delts += quarterDelta * (vnew + v) * 
      (    dxx * sxx +      dyy * syy +       dzz * szz  + 
       2.*dxy * txy  + 2.*dxz * txz  +  2.*dyz * tyz ) ; 
  } 

Figure 4. Resulting TALC Code. 

 
Note that there are no subscripts in this TALC code 
since array indices can be automatically generated from 
the schema.  A complete list of the automatic array 
index transformations is included in Figure 5.  
 

Sample TALC Transformations 
(performed inside while loop) 

Vector 
variable used 
inside a while 

block 

Transformation 
produced in a for 

statement 

Comments 

var var[index] 
or 

struct[index].var 

autogenerate index for 
correct memory 
interleave and 
topological subset, 
based on schema and 
compiler option 

var[xxx] var[xxx] 
or 

struct[xxx].var 

override - do what 
user asks for 

var(offset) var[index+offset] 
or 

struct[index+offset].var 

for stencil 
calculations 

Figure 5. The language extension 
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3.5 Summary  For Converting Code to TALC 
 
There are four steps involved in a general strategy for 
converting mesh-related algorithms from C or C++ to 
TALC, namely: 
 

• First, a schema is created to identify topological relationships 
among Fields in the original C source code. 

 
• Second,  for loops over index variables are changed to while 

loops over IndexSets. 
 
• Third, the original C source code is modified by stripping 

indices off of arrays in loops wherever appropriate. 
 
• Fourth, the memory allocations for arrays of interest must use 

the TALC memory allocator.  Many scientific codes have 
centralized their allocation policy (wrapped malloc, database, 
etc.) which may simplify this step.  

 
The current TALC compiler framework will instantiate 
source code for a given schema, or directly produce a 
‘.o’ file. 
 
4. Implementing a TALC Prototype 
 
The economics and maturation of new language and 
compiler designs make it particularly difficult for 
highly specialized languages to appear and be accepted 
by developers of large scale applications.  Though 
significant aspects of our approach are language 
independent, our research work has targeted the 
optimization of array constructs in C/C++. The 
framework developed to support this research, ROSE 
[14], allows us to express optimizations based on an 
abstract C++ grammar, eliminating the syntactical 
idiosyncrasies of C++ in the specification of a 
transformation. 
 
4.1 The ROSE Framework 
 
ROSE is a compiler infrastructure for building source-
to-source translators (compilers that take in source 
code, implement programmable rewrites to the Abstract 
Syntax Tree (AST) and then regenerate source code).  
ROSE addresses Fortran 2003, C, and C++ and 
provides a high level AST representation for custom 
analysis and transformation of large scale DOE 
applications.  An explicit goal of ROSE has been to 
significantly lower the barrier to research work having 
impact on DOE scale applications.  ROSE forms the 
basis for a wide range of external and internal research 
projects. 
 
The design of the Intermediate Representation (IR) is 
object-oriented and defines IR nodes for each language 
construct of Fortran 2003, C, C++ and shared 
approximately 85% of the IR nodes between all three 
supported languages. ROSE supports all the numerous 
details of reproducing the generated code 
indistinguishable from the original input code because 
this is important to our user base (details include: 

formatting, comments, CPP directives, etc.). The 
interface to the IR used in ROSE is based on SAGE 
[15] and is similar to few other object-oriented IRs 
which attempt to preserve the source level of detail. 
While we have specific goals for this work within 
research on the general optimization of high-level 
abstractions, ROSE is a general infrastructure designed 
as a library for building source-based tools.  
 
ROSE is designed to use multiple internal language 
front-ends and parsers. For C and C++ we use the EDG 
front-end. [16] For Fortran 2003 we use the Los 
Alamos Open Fortran Parser (OFP). [17] Older versions 
of Fortran, specifically Fortran 95, Fortran 90, Fortran 
77, and Fortran 66 are also supported.  Special attention 
has been paid to handling fixed and free format codes 
and generating fixed for free format output. For C, 
ROSE supports the full C89 and C99 versions, plus 
most of the gnu extensions. For C++, ROSE supports 
the full C++ language, and permits analysis and 
transformation of all instantiated templates. 
 
For all languages, ROSE provides full type evaluation 
and semantic analysis. The C and C++ work has been 
tested on a number of different million line applications 
within DOE. The Fortran support is the most recent 
work, and consequently is not as robust yet. 
 
Support in ROSE includes: 1) the internal loop 
optimizers that can be leveraged in building 
optimization tools. 2) attribute grammar based AST 
traversals to make it easy to define custom program 
analysis and transformation passes. 3) shared memory 
and distributed memory parallel attribute evaluation for 
writing parallel program analysis (when program 
analysis performance is critical).  4) an extensible tool, 
Compass, for defining and evaluating properties on the 
AST (used as a basis for security analysis research). 5) 
Additional predefined optimizations (inlining, Partial 
Redundancy Elimination (PRE), etc.) and useful 
transformations to support external research (outlining).  
6) Many more features are included in ROSE, which 
has been an ongoing project for many years. 
 
4.2 How ROSE Ensures Conformance for TALC 
 
Because TALC is implemented using ROSE, it derives 
its robustness and conformance to the C language from 
ROSE (which derives its conformance to C via the 
EDG front-end).  Because the front-end is not modified 
within the TALC work, there is no formal language 
extension. More precisely, TALC represents an 
extension as custom compiler support for a domain-
specific abstraction.  It is however, superficially 
indistinguishable from a true language extension. 
Additionally as a domain-specific abstraction optimized 
via custom transformations written using ROSE as a 
source-to-source translator, the work is significantly 
more portable than a formal language extension. 
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5. Results 
 
To evaluate the performance capabilities of TALC, we 
evaluated several common mesh access patterns on 
three different architectures with several resulting data 
layouts as automatically generated by TALC. 
 
In Figure 6, a domain of 12000 elements contains two 
sparse material subsets of 8000 and 4000 elements.  
The 8000 element subset is traversed using the 
algorithm shown in Figure 3. Normalized time is shown 
in the Y-axis with (1.0) being the worst performing data 
layout for the given architecture. Each architecture is 
normalized independently.  Note that the Itanium2 runs 
at about the same speed no matter how we code the 
algorithm.  Note that Array-like is fastest for the 
Itanium2, while struct-like is the fastest for the Power5.  
Also, the spread between the times on the power5 is 
large. 

 
Figure 6. Mesh traversal performance for three 

data layouts on three architectures 
 
In Table 1, we show the L1 cache hit ratio for each data 
layout in Figure 6 on the Opteron processor, as 
measured by hardware counters. Looking at the L1 
cache hit ratio, one would assume that the Array-like 
layout is the most efficient. However if you sum the 
cache hits and misses for each layout, you find that the 
Struct-like access has the lowest number of memory 
accesses, and thus the lowest number of stalls. 
 

Memory 
Interleave 

Hit 
Count 

Miss 
Count 

Hit 
Ratio 

Array-like 3955732080 286239697 93.3% 
Intermediate 2842569424 281404535 91.0% 
Struct-like 2769568352 273753504 91.1%  

Table 1. L1 cache statistics for the stress problem 
on the Opteron processor. 

 
The reason for the lower memory access is that base-
offset addressing can be used on a single pointer with 
structs, but when individual arrays are used, each array 
pointer must be given its own register.  Since there are a 

limited number of registers on the x86 architecture, 
register pressure forces individual array pointers to be 
swapped to memory as the algorithm progresses. 
The lesson learned here is that raw cache hit numbers 
can be misleading when optimizing for performance. 
 
In Figure 7, we calculate volumes for hexahedral 
elements in a 420K element mesh. Each element 
touches eight nodes, and each node has three coordinate 
components. As with the previous performance results, 
normalized time is shown in the Y-axis with (1.0) being 
the worst performing data layout for the given 
architecture. A lower value represents a faster runtime. 
Our results show that putting x, y, z in a struct (e.g. 
class Point) is the slowest possible choice overall, even 
though most people use a coord struct in their code! 

 
Figure 7. Brick volume calculation performance for 

four data layouts on three architectures. 
 
Finally, figure 8 provides normalized times for a Jacobi 
Iteration across a two-dimensional mesh. Such access 
patterns can be employed as iterative solutions to a 
Poisson problem. For our results, each interior element 
is updated based on its neighbors to the north, south, 
east, and west. 

 
Figure 8. Jacobi Iteration performance for three 

data layouts on three architectures. 
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Speedups exceeding 2x are certainly encouraging. 
While effective cache utilization is a key element, our 
observed gains go past cache hit ratios.  As shown, a 
high cache hit ratio is not necessarily a good measure of 
a well written, high performance implementation of an 
algorithm. 
 
The following interpretations can be drawn from these 
results. First, data structure choices are system 
architecture and problem domain dependent. Second, 
data structure choices can result in a 2x performance 
difference on a given machine. Third, choosing a data 
structure that is best for one machine can be the worst 
for another machine. 
 
There is no simple way to determine the best data 
structure across all possible architectures at the 
beginning of a software project. Once a data structure 
strategy has been selected, it will likely be time-
consuming and error-prone to convert to another. Since 
system architectures change over time, the need for an 
automated solution such as TALC becomes a valuable 
tool for those interested in performance portability. 
 
5.2 TALC Benefits 
 
As discussed in Section 5.1, TALC provides 
performance portability for mesh-based applications 
across a diversity of system architectures. TALC 
centralizes the traversal policy permitting cache 
blocking and data movement on a variety of 
architectural models (multi-core, NUMA, GPGPU). By 
allowing the user to choose the best data layout, TALC 
enables up to 2x performance improvements .  
 
TALC offers several important features that improve 
code readability and correctness. Removal of explicit 
subscripting can reduce or eliminate indexing errors. 
The resulting coding of loops enhances the readability 
of equations. The TALC schema enables the compiler 
to provide stronger type checking operations to enforce 
topological constraints. For instance, if an element 
centered pressure is assigned to a node centered 
coordinate, the compiler can immediately catch this 
nonsensical assignment. The use of Indexsets also 
allows better bounds checking on arrays than could be 
done with raw mallocs.  Finally, the schema can 
simplify the refactoring of data structures when new 
algorithms or physics packages are introduced, if for 
instance a variable defined over the mesh were to be 
moved to a variable defined only over a material subset. 
 
The ability for TALC to handle these types of changes 
without requiring corresponding code changes is a 
major advantage. A large hydrodynamics code recently 
went through a hand-refactoring process that could 
have been done by TALC.  Even though the code was 
hundreds of thousands of lines, the code found that 
changing the memory interleave of some arrays resulted 

in a 42-100% speedup of the hydrodynamics depending 
on the problem being solved and the machine being 
used. The Hydrodynamics can be the dominant portion 
of the runtime for many physics applications, so 
doubling the performance with just a change of data 
structures is impressive.  Part of the performance gain 
probably came from the compiler recognizing extra 
optimizations that could be applied (same compiler 
flags), and the rest came from different cache latency 
characteristics. 
 
Finally, the advantage of grouping arrays topologically 
is that they can often be nested in inheritance 
hierarchies.  For example, one array class could contain 
array data common to all the nodes of a mesh, while 
another class could contain extra array data pertaining 
to a subset of the nodes.  Indexsets can be used to map 
array indices in the subset to corresponding indices in 
the larger mesh. 
 
6. Related Work 
 
An important topic covered by this paper is data 
organization, which is separate from the topic of  data 
layout.  An excellent introduction to the benefits of data 
organization can be found in the paper, “Collection 
Level Polymorphism: A Path to High Performance C++ 
Applications” by Luke [18]. Another excellent data 
organization scheme is described in the paper,  “Janus – 
a C++ Template Library for Parallel Dynamic Mesh 
applications” by Gerlach, et al . [19] 
 
TALC tries to map the concepts presented in these two 
papers to a form that has the look and feel of standard 
C. In doing so, the introduction of an Indexset object 
was needed.   An Indexset is much like a ZPL [14] 
Region,  however an Indexset in TALC can be 
structured or unstructured.  Also unlike ZPL, TALC 
does not try to be a language in and of itself, but merely 
extends the concept of how subscripting operations 
should work in the context of the C and C++ languages. 
 
The TALC project is currently exploring an extension 
to heterogeneous programming environments by 
leveraging the RapidMind [20] platform.  Other work in 
heterogeneous programming environments can be 
found in the paper “HMPP:  A Hybrid Multi-core 
Parallel Programming Environment” by Romain 
Dolbeau, et al. [21] 
 
7. Conclusions and Future Work 
 
TALC is an extension to C that improves data layout 
and code maintainability for applications that traverse 
common data structures such as large meshes or cubes.  
The use of TALC provides many benefits for mesh-
based projects. These applications frequently 
encompass hundreds of thousands of lines of code and 
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are therefore prime candidates for software maintaina-
bility improvements. Furthermore, such applications are 
frequently very CPU intensive and are also prime 
candidates for performance improvements.  
 
To achieve these benefits, TALC uses topological 
grouping as a way to control data layouts in memory 
and as a way to improve readability and correctness of 
code.. We have implemented TALC using the ROSE 
compiler infrastructure.  
 
Our results demonstrate the minimal changes necessary 
to rewrite existing mesh-based loop into TALC as well 
as the potential for performance gains and software 
maintainability improvements. Performance portability 
is likely to become a necessary part of programming in 
the near future. TALC transformations provide a 
unified way of running effectively on a diversity of 
system architectures to achieve up to 2x improvements 
in runtime performance. 
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